In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.
Energy conditions are not physical constraints per se, but are rather mathematically imposed boundary conditions that attempt to capture a belief that "energy should be positive".
In general relativity, energy conditions are often used (and required) in proofs of various important theorems about black holes, such as the no hair theorem or the laws of black hole thermodynamics.
The energy conditions represent such criteria. Roughly speaking, they crudely describe properties common to all (or almost all) states of matter and all non-gravitational fields that are well-established in physics while being sufficiently strong to rule out many unphysical "solutions" of the Einstein field equation.
Mathematically speaking, the most apparent distinguishing feature of the energy conditions is that they are essentially restrictions on the and of the matter tensor. A more subtle but no less important feature is that they are imposed eventwise, at the level of . Therefore, they have no hope of ruling out objectionable global features, such as closed timelike curves.
First, a unit timelike vector field can be interpreted as defining the world lines of some family of (possibly noninertial) ideal observers. Then the scalar field
can be interpreted as the total mass–energy density (matter plus field energy of any non-gravitational fields) measured by the observer from our family (at each event on his world line). Similarly, the vector field with components represents (after a projection) the momentum measured by our observers.
Second, given an arbitrary null vector field the scalar field
can be considered a kind of limiting case of the mass–energy density.
Third, in the case of general relativity, given an arbitrary timelike vector field , again interpreted as describing the motion of a family of ideal observers, the Raychaudhuri scalar is the scalar field obtained by taking the trace of the tidal tensor corresponding to those observers at each event:
This quantity plays a crucial role in Raychaudhuri's equation. Then from Einstein field equation we immediately obtain
where is the trace of the matter tensor.
Each of these has an averaged version, in which the properties noted above are to hold only on average along the flowlines of the appropriate vector fields. Otherwise, the Casimir effect leads to exceptions. For example, the averaged null energy condition states that for every flowline (integral curve) of the null vector field we must have
There are many classical matter configurations which violate the strong energy condition, at least from a mathematical perspective. For instance, a scalar field with a positive potential can violate this condition. Moreover, observations of dark energy/cosmological constant show that the strong energy condition fails to describe our universe, even when averaged across cosmological scales. Furthermore, it is strongly violated in any cosmological inflationary process (even one not driven by a scalar field).
where is the four-velocity of the matter particles and where is the projection tensor onto the spatial hyperplane elements orthogonal to the four-velocity, at each event. (Notice that these hyperplane elements will not form a spatial hyperslice unless the velocity is vorticity-free, that is, irrotational.) With respect to a frame aligned with the motion of the matter particles, the components of the matter tensor take the diagonal form
Here, is the energy density and is the pressure.
The energy conditions can then be reformulated in terms of these eigenvalues:
The implications among these conditions are indicated in the figure at right. Note that some of these conditions allow negative pressure. Also, note that despite the names the strong energy condition does not imply the weak energy condition even in the context of perfect fluids.
Indeed, the idea that there is a connection between causality violation and fluid instabilities has a long history. For example, in the words of Werner Israel: "If the source of an effect can be delayed, it should be possible for a system to borrow energy from its ground state, and this implies instability". It is possible to show that this is a restatement of the Hawking-Ellis vacuum conservation theorem at finite temperature and chemical potential.
between the plates. (Be mindful, though, that the Casimir effect is topological, in that the sign of the vacuum energy depends on both the geometry and topology of the configuration. Being negative for parallel plates, the vacuum energy is positive for a conducting sphere.) However, various quantum inequalities suggest that a suitable averaged energy condition may be satisfied in such cases. In particular, the averaged null energy condition is satisfied in the Casimir effect. Indeed, for energy–momentum tensors arising from effective field theories on Minkowski spacetime, the averaged null energy condition holds for everyday quantum fields. Extending these results is an open problem.
The strong energy condition is obeyed by all normal/Newtonian matter, but a false vacuum can violate it. Consider the linear barotropic equation state
where is the matter energy density, is the matter pressure, and is a constant. Then the strong energy condition requires ; but for the state known as a false vacuum, we have .
Perfect fluids
\rho& 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p \end{bmatrix}.
Non-perfect fluids
Attempts at falsifying the energy conditions
See also
Notes
|
|